\qquad
The $\mathbf{p H}$ of a solution indicates how acidic or basic that solution is.

$$
\begin{array}{ll}
\mathrm{pH} \text { range: } & 0-7=\text { acidic } \\
& 7=\text { neutral } \\
& 7-14=\text { basic }
\end{array}
$$

Since $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$ at $\mathbf{2 5}^{\circ} \mathrm{C}$, if $\left[\mathrm{H}^{+}\right]$is known, the $\left[\mathrm{OH}^{-}\right]$can be calculated and vice versa.
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=10^{-\mathrm{pH}}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
$\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}$
$\mathrm{pH}+\mathrm{pOH}=14$

Complete the following chart \& show all work.

	$\left[\mathrm{H}^{+}\right]$	pH	[OH^{-}]	pOH	$\mathbf{K}_{\mathbf{w}}$	Acid or Base
1	$1.0 \times 10^{-5} \mathrm{M}$					
2		7				
3			$1.0 \times 10^{-4} \mathrm{M}$			
4	$1.0 \times 10^{-2} \mathrm{M}$					
5				11		
6		12				
7			$1.0 \times 10^{-5} \mathrm{M}$			
8	$1.0 \times 10^{-11} \mathrm{M}$					
9				13		
10		6				

